كلية الحاسبات والذكاء الإصطناعي

Calculus

Lecture 01

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Introduce Myself

Dr. Ahmed Hagag

Lecturer, Scientific Computing Department, Faculty of Computers and Artificial Intelligence, Benha University.

Email: ahagag@fci.bu.edu.eg

Basic Course Information

- Course code: BS101
- Course name: Calculus
- Level: $1^{\text {st }}$ Year / B.Sc.
- Course Credit: $\mathbf{3}$ credits
- Instructor:

Dr. Mustafa Hassan
Dr. Ahmed Hagag

Flowchart (CS)

كلية الحاسبات والذكاء الإصطناعي

Flowchart (IS)

كلية الحاسبات والذكاء الإصطناعي

Flowchart (SC)

كلية الحاسبات والذكاء الإصطناعي

Flowchart (AI)

Assessment (1/6)

كلية الحاسبات والذكاء الإصطناعي

General Discussion

What do you expect to get from this course?

Lectures References (1/3)

Calculus James Stewart 8 Edition

Lectures References (2/3)

Calculus

Ron Larson and Bruce Edwards || Edition

Lectures References (3/3)

كلية الحاسبات والذكاء الإصطناعي

Calculus with Applications
ELEVENTH EDITION
Margaret L. Lial • Raymond N. Greenwell • Nathan P. Ritchey

Calculus with Applications Margaret Lial, Raymond Greenwell and Nathan Ritchey II Edition

Related Topics

Calculus

Differentiation \& Integration

$$
1665-1675
$$

Isaac Newton (England)

Gottfried Leibniz
(German)

Related Topics

Calculus

Differentiation \& Integration

$$
1665-1675
$$

Limits

Augustin-Louis Cauchy (France)

Related Topics

كلية الحاسبات والذكاء الإصطناعي

Calculus

Differentiation \& Integration

$$
1665-1675
$$

Limits

 1821
Set Theory 1874

Georg Cantor (German)

Related Topics

كلية الحاسبات والذكاء الإصطناعي

Calculus

Differentiation \& Integration

$$
1665-1675
$$

Limits

\square
Set Theory
1874

Function
From the $\mathbf{1 2}^{\text {th }}$ Century. Concept function in 1673

Gottfried Leibniz (German)

Related Topics

كلية الحاسبات والذكاء الإصطناعي

Calculus

Differentiation \& Integration Limits

Set Theory
1874
Function
1673
Numbers

Related Topics

كلية الحاسبات والذكاء الإصطناعي

Course Syllabus

$>$ Chapter 1: Numbers, Sets, and Functions.
$>$ Chapter 2: Limits and Continuity.
$>$ Chapter 3: Derivatives and Differentiation Rules.
$>$ Chapter 4: Applications of Differentiation.
$>$ Chapter 5: Integrals.
$>$ Chapter 6: Techniques of Integration.
> Chapter 7: Applications of Definite Integrals.

Chapter 1 Topics

- Numbers and Sets.
- Representations of Functions.
- Domain \& Range of Functions.
- Algebra of Functions.
- Increasing and Decreasing.
- Test for Even and Odd Functions.
- Types of Functions and their Graphs.
- Transformations of Functions.

Numbers (1/5)

The simplest numbers are the "counting numbers"

$$
1,2,3, \ldots
$$

The fundamental significance of this collection of numbers is emphasized by its symbol \mathbf{N} (for natural numbers). Also, begin the natural numbers with 0 , to be

$$
0,1,2,3, \ldots
$$

Also called the whole numbers.

Numbers (2/5)

كلية الحاسبات والذكاء الإصطناعي

$\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of all natural numbers

Numbers (3/5)

$\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of all natural numbers
 $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of all integers $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, the set of all positive integers

-3	-2	-1	0	1	2	3

Numbers (4/5)

$\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of all natural numbers
 $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of all integers
 $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, the set of all positive integers
 $\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}$, and $q \neq 0\}$,
 the set of all rational numbers

Numbers (5/5)

$\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of all natural numbers
$\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of all integers
$\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, the set of all positive integers
$\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}$, and $q \neq 0\}$,
the set of all rational numbers
\mathbf{R}, the set of all real numbers
\mathbf{R}^{+}, the set of all positive real numbers

Sets (1/11)

كلية الحاسبات والذكاء الإصطناعي

A set is an unordered collection of objects.

The objects in a set are called the elements, or members, of the set. A set is said to contain its elements.

Sets (2/11)

كلية الحاسبات والذكاء الإصطناعي

$S=\{a, b, c, d\}$
We write $a \in S$ to denote that a is an element of the set S. The notation $e \notin S$ denotes that e is not an element of the set S.

Sets (3/11)

كلية الحاسبات والذكاء الإصطناعي

Example1:

For each of the following sets, determine whether 3 is an element of that set.
\{1,2,3,4\}
$\{\{1\},\{2\},\{3\},\{4\}\}$
$\{1,2,\{1,3\}\}$

Sets (3/11)

كلية الحاسبات والذكاء الإصطناعي

Example1:

For each of the following sets, determine whether 3 is an element of that set.
$3 \in\{1,2,3,4\}$
$3 \notin\{\{1\},\{2\},\{3\},\{4\}\}$
$3 \notin\{1,2,\{1,3\}\}$

Sets (4/11)

كلية الحاسبات والذكاء الإصطناعي

Empty Set

There is a special set that has no elements. This set is called the empty set, or null set, and is denoted by \emptyset.

The empty set can also be denoted by $\}$

Sets (5/11)

كلية الحاسبات والذكاء الإصطناعي

Cardinality

The cardinality is the number of distinct elements in S. The cardinality of S is denoted by $|S|$.

Sets (6/11)

كلية الحاسبات والذكاء الإصطناعي

Example1

$$
\begin{aligned}
& S=\{a, b, c, d\} \\
& |S|=4 \\
& A=\{1,2,3,7,9\} \\
& |A|=5 \\
& \emptyset=\{ \} \\
& |\varnothing|=0
\end{aligned}
$$

Sets (7/11)

كلية الحاسبات والذكاء الإصطناعي

Example2

$S=\{a, b, c, d,\{2\}\}$
$|S|=5$
$A=\{1,2,3,\{2,3\}, 9\}$
$|A|=5$
$\{\emptyset\}=\{\{ \}\}$
$|\{\varnothing\}|=1$

Sets (8/11)

كلية الحاسبات والذكاء الإصطناعي

Infinite

A set is said to be infinite if it is not finite. The set of positive integers is infinite.

$$
Z^{+}=\{1,2,3, \ldots\}
$$

Sets (9/11)

If A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$. We write $A=B$, if A and B are equal sets.

- The sets $\{1,3,5\}$ and $\{3,5,1\}$ are equal, because they have the same elements.
- $\{1,3,3,5,5,5\}$ is the same as the set $\{1,3,5\}$ because they have the same elements.

Sets (10/11)

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$
A \subseteq B \leftrightarrow \forall x(x \in A \rightarrow x \in B)
$$

Sets (13/24)

كلية الحاسبات والذكاء الإصطناعي

Subset

For every set S,
(i) $\emptyset \subseteq S$ and (ii) $S \subseteq S$.

To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Sets (14/24)

كلية الحاسبات والذكاء الإصطناعي

Proper Subset

The set A is a subset of the set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B.

$$
A \subset B \leftrightarrow(\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A))
$$

Functions (1/12)

كلية الحاسبات والذكاء الإصطناعي

The Function:

$$
\begin{gathered}
\text { Ex. } \sqrt{ } \\
\begin{array}{c}
4 \rightarrow 2 \\
16 \rightarrow 4
\end{array}
\end{gathered}
$$

Functions (2/12)

The Function $f: D \rightarrow E$

A function f is a rule that assigns to each element x in a set D exactly one element, called $f(x)$, in a set E.

Functions (3/12)

The Function $f: A \rightarrow B$

Domain $=\{a, b, c, d, e\}$
Co-Domain $=\{1,2,3,4,5,6,7\}$
Range $=\{1,3,4,5,7\}$
ex. $f(a)=1, f(e)=5, \ldots$

Functions (4/12)

كلية الحاسبات والذكاء الإصطناعي
The Function $f: X \rightarrow Y$

Functions (5/12)

Function of Circle's Area:

- The area A of a circle depends on the radius r of the circle. The rule that connects r and A is given by the equation $a=\pi r^{2}$. With each positive number r there is associated one value of A, and we say that A is a function of r.
- $A=f(r)=\pi r^{2}$

Area

where r is the independent variable and A is the dependent variable.

Functions (6/12)

Example4:

Is the following rules define y as a function of x ?

Functions (6/12)

كلية الحاسبات والذكاء الإصطناعي

Example4:

Is the following rules define y as a function of x ?

Functions (7/12)

كلية الحاسبات والذكاء الإصطناعي

Example5:

Is the following rules define y as a function of x ?

Functions (7/12)

كلية الحاسبات والذكاء الإصطناعي

Example5:

Is the following rules define y as a function of x ?

Functions (8/12)

كلية الحاسبات والذكاء الإصطناعي

Representations of Functions:

- The function can be represented in different ways:
$>$ by an equation,
$>$ in a table,
$>$ in words,
$>$ Or by a graph.

Functions (9/12)

كلية الحاسبات والذكاء الإصطناعي

Representations of Functions (Equation):

- Equation in implicit form:

$$
x^{2}+2 y=1
$$

- Equation in explicit form:

$$
y=\frac{1}{2}\left(1-x^{2}\right)
$$

- Function notation

$$
f(x)=\frac{1}{2}\left(1-x^{2}\right)
$$

Functions (10/12)

Representations of Functions (Table):

$$
f(x)=2 x
$$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	-4
-1	-2
0	0
1	2
2	4
0.5	1

Functions (11/12)

Representations of Functions (in words (verbally)):

$$
f(x)=x^{2}
$$

- The function is described in words:

Let $f(x)$ be the squared value of x. The rule that the value of squared x is equal to $x \times x$.

Functions (12/12)

Representations of Functions (Graph):

Graph

Functions (12/12)

Representations of Functions (Graph):

The Vertical Line Test:

(a) This curve represents a function.

$$
y=f(x)
$$

(b) This curve doesn't represent a function.

$$
y=f(x)
$$

Domain \& Range (1/37)

Four types of inequalities to compare real numbers:

$$
\begin{array}{ll}
x<y & x \text { is less than } y \\
x \leq y & x \text { is less than or equal to } y \\
x>y & x \text { is greater than } y \\
x \geq y & x \text { is greater than or equal to } y
\end{array}
$$

The double inequality $a<b<c$ is shorthand for the pair of inequalities $a<b$ and $b<c$.

Domain \& Range (2/37)

Intervals
on the
Number Line

Inequality

$$
a \leq x \leq b
$$

Geometric Description

$\frac{a}{\frac{\text { Interval Notation }}{[a, b]}}$	Closed Interval

Domain \& Range (2/37)

Intervals
on the
Number Line

Inequality

$$
a<x<b
$$

Geometric Description

Domain \& Range (2/37)

Intervals
on the
Number Line

Inequality

$$
a \leq x<b
$$

Geometric Description

a
b

Interval Notation

$$
[a, b)
$$

Domain \& Range (2/37)

Intervals on the
 Number Line

 Inequality

 Inequality
 $$
a<x \leq b
$$

Geometric Description

Interval Notation

$(a, b]$

Domain \& Range (2/37)

كلية الحاسبات والذكاء الإصطناعي

Intervals
on the
Number Line

Inequality

$$
a \leq x
$$

Geometric Description

a

Interval Notation

$$
[a, \infty)
$$

Domain \& Range (2/37)

كلية الحاسبات والذكاء الإصطناعي

Intervals
on the
Number Line

Inequality

$$
a<x
$$

Geometric Description

a

Interval Notation

$$
(a, \infty)
$$

Domain \& Range (2/37)

كلية الحاسبات والذكاء الإصطناعي

Intervals
on the
Number Line

Inequality

$$
x \leq b
$$

Geometric Description

b

Interval Notation

$$
(-\infty, b]
$$

Domain \& Range (2/37)

كلية الحاسبات والذكاء الإصطناعي

Intervals
on the
Number Line

Inequality

Geometric Description

$$
b
$$

Interval Notation

$$
(-\infty, b)
$$

Domain \& Range (13/37)

كلية الحاسبات والذكاء الإصطناعي

Domain \& Range (14/37)

كلية الحاسبات والذكاء الإصطناعي

Domain \& Range (15/37)

كلية الحاسبات والذكاء الإصطناعي

Example1:

Find the domain and range of the following function.

Domain \& Range (15/37)

Example1:

Find the domain and range of the following function.

Domain \& Range (16/37)

كلية الحاسبات والذكاء الإصطناعي

Example2:

Find the domain and range of the following function.

Domain \& Range (16/37)

Example2:

Find the domain and range of the following function.

Domain \& Range (17/37)

Example3:

Find the domain and range of the following function.

Domain \& Range (17/37)

كلية الحاسبات والذكاء الإصطناعي

Example3:

Find the domain and range of the following function.

Domain \& Range (18/37)

كلية الحاسبات والذكاء الإصطناعي

Example4:

Find the domain and range of the following function.

Domain \& Range (18/37)

Example4:

Find the domain and range of the following function.

Domain \& Range (19/37)

كلية الحاسبات والذكاء الإصطناعي

Example5:

Find the domain and range of the following function.

Domain \& Range (19/37)

Example5:

Find the domain and range of the following function.

Domain: $x \geq 1$

Domain \& Range (20/37)

كلية الحاسبات والذكاء الإصطناعي

Example6:

Find the domain and range of the following function.

Domain \& Range (20/37)

كلية الحاسبات والذكاء الإصطناعي

Example6:

Find the domain and range of the following function.

Domain: $-2 \leq x \leq 2$

Domain \& Range (21/37)

Implied Domain:

- The domain of a function can be described explicitly, or it may be described implicitly by an equation used to define the function. The implied domain is the set of all real numbers for which the equation is defined, whereas an explicitly defined domain is one that is given along with the function.

Domain \& Range (22/37)

كلية الحاسبات والذكاء الإصطناعي

For example, on one hand, the function

$$
f(x)=x+2, \quad 1 \leq x \leq 4
$$

has an explicitly defined domain given by $\{x: 1 \leq x \leq 4\}$.
On the other hand, the function

$$
f(x)=x+2
$$

has an implied domain ... ?

Domain \& Range (22/37)

For example, on one hand, the function

$$
f(x)=x+2, \quad 1 \leq x \leq 4
$$

has an explicitly defined domain given by $\{x: 1 \leq x \leq 4\}$.
On the other hand, the function

$$
f(x)=x+2
$$

$$
(-\infty, \infty)
$$

has an implied domain that is the set of real numbers.

Domain \& Range (23/37)

Polynomial Function:

The most common type of algebraic function is a polynomial function: A function P is called a polynomial if

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where n is a nonnegative integer and the numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are constants called the coefficients of the polynomial. The domain of any polynomial is \mathbb{R}.

Domain \& Range (24/37)

كلية الحاسبات والذكاء الإصطناعي

Example1:

Find the domain of the following function.

$$
f(x)=x^{2}
$$

Any number may be squared, so the domain is the set of all real numbers \mathbb{R}, written $(-\infty, \infty)$.

Domain \& Range (25/37)

Another example, on one hand, the function

$$
f(x)=\frac{1}{x^{2}-4}, \quad 4 \leq x \leq 5
$$

has an explicitly defined domain given by $\{x: 4 \leq x \leq 5\}$.
On the other hand, the function

$$
g(x)=\frac{1}{x^{2}-4}
$$

has an implied domain ...?

Domain \& Range (25/37)

Another example, on one hand, the function

$$
f(x)=\frac{1}{x^{2}-4}, \quad 4 \leq x \leq 5
$$

has an explicitly defined domain given by $\{x: 4 \leq x \leq 5\}$.
On the other hand, the function

$$
g(x)=\frac{1}{x^{2}-4}
$$

$$
\mathbb{R}-\{ \pm 2\}
$$

has an implied domain that is the set $\{x: x \neq \pm 2\}$.

Domain \& Range (26/37)

CAUTION:

When finding the domain of a function, there are two operations to avoid:
(1) dividing by zero; and
(2) taking the square root (or any even root) of a negative number.

Domain \& Range (27/37)

كلية الحاسبات والذكاء الإصطناعي

Example2:

Find the domain of the following function.

$$
f(x)=\frac{3}{x}
$$

Domain \& Range (27/37)

كلية الحاسبات والذكاء الإصطناعي

Example2:

Find the domain of the following function.

$$
f(x)=\frac{3}{x}
$$

f is defined for $x \neq 0$.
So, the domain of the function is $\mathbb{R}-\{0\}$.
Also, the domain is $(-\infty, 0) \cup(0, \infty)$.

Domain \& Range (28/37)

كلية الحاسبات والذكاء الإصطناعي

Example3:

Find the domain of the following function.

$$
f(x)=\frac{x}{x^{2}-1}
$$

Domain \& Range (28/37)

كلية الحاسبات والذكاء الإصطناعي

Example3:

Find the domain of the following function.

$$
f(x)=\frac{x}{x^{2}-1}
$$

f is defined for $x^{2}-1 \neq 0$. Therefore, $x \neq \pm 1$.
So, the domain of the function is $\mathbb{R}-\{ \pm 1\}$.
Also, the domain is $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$.

Domain \& Range (29/37)

كلية الحاسبات والذكاء الإصطناعي

Example4:

Find the domain of the following function.

$$
f(x)=\frac{2 x+1}{x^{2}-x-12}
$$

Domain \& Range (29/37)

كلية الحاسبات والذكاء الإصطناعي

Example4:

Find the domain of the following function.

$$
f(x)=\frac{2 x+1}{x^{2}-x-12}
$$

at most two roots
Using Quadratic Formula, the solutions of the quadratic
equation $a x^{2}+b x+c=0$ are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Domain \& Range (29/37)

كلية الحاسبات والذكاء الإصطناعي

Example4:

Find the domain of the following function.

$$
f(x)=\frac{2 x+1}{x^{2}-x-12}
$$

$x^{2}-x-12=0$
$a=1$
$b=-1$
$c=-12$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Domain \& Range (29/37)

كلية الحاسبات والذكاء الإصطناعي

Example4:

Find the domain of the following function.

$$
f(x)=\frac{2 x+1}{x^{2}-x-12}
$$

$x^{2}-x-12=0$
$a=1$
$b=-1$
$c=-12$

$$
\begin{aligned}
& x=\frac{1 \pm \sqrt{1+48}}{2}=\frac{1 \pm 7}{2} \\
& x=-3, \quad x=4
\end{aligned}
$$

Domain \& Range (29/37)

كلية الحاسبات والذكاء الإصطناعي

Example4:

Find the domain of the following function.

$$
f(x)=\frac{2 x+1}{x^{2}-x-12}
$$

So, the domain of the function is $\mathbb{R}-\{-3,4\}$.
Also, the domain is $(-\infty,-3) \cup(-3,4) \cup(4, \infty)$.

Domain \& Range (30/37)

كلية الحاسبات والذكاء الإصطناعي

Example5:

If

$$
f(x)=\frac{x^{2}-x}{x-1} \quad \text { and } \quad g(x)=x
$$

is it true that $f=g$?

Domain \& Range (30/37)

كلية الحاسبات والذكاء الإصطناعي

Example5:

If

$$
f(x)=\frac{x^{2}-x}{x-1} \quad \text { and } \quad g(x)=x
$$

is it true that $f=g$?
NO, because the domain of the function f is $\mathbb{R}-\{1\}$. However, the domain of the function g is \mathbb{R}.

Domain \& Range (31/37)

كلية الحاسبات والذكاء الإصطناعي

Example6:

Find the domain of the following function.

$$
f(x)=\sqrt{x-1}
$$

Domain \& Range (31/37)

كلية الحاسبات والذكاء الإصطناعي

Example6:

Find the domain of the following function.

$$
f(x)=\sqrt{x-1}
$$

The domain is the set of all x-values for which $x-1 \geq 0$, which is the interval $[1, \infty)$.

Domain \& Range (32/37)

كلية الحاسبات والذكاء الإصطناعي

Example7:

Find the domain of the following function.

$$
f(x)=\sqrt{x^{2}-x-6}
$$

Domain \& Range (32/37)

كلية الحاسبات والذكاء الإصطناعي

Example7:

Find the domain of the following function.

$$
\begin{aligned}
& f(x)=\sqrt{x^{2}-x-6} \\
& x^{2}-x-6 \geq 0
\end{aligned}
$$

Domain \& Range (32/37)

كلية الحاسبات والذكاء الإصطناعي

Example7:

Find the domain of the following function.

$$
\begin{array}{ll}
& f(x)=\sqrt{x^{2}-x-6} \\
x^{2}-x-6=0 \\
a=1 \\
b=-1 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
c=-6 &
\end{array}
$$

Domain \& Range (32/37)

كلية الحاسبات والذكاء الإصطناعي

Example7:

Find the domain of the following function.

$$
\begin{aligned}
& f(x)=\sqrt{x^{2}-x-6} \\
& x^{2}-x-6=0 \\
& a=1 \\
& b=-1 \\
& c=-6 \\
& x=\frac{1 \pm \sqrt{1+24}}{2}=\frac{1 \pm 5}{2} \\
& x=-2 \quad, \quad x=3
\end{aligned}
$$

Domain \& Range (32/37)

كلية الحاسبات والذكاء الإصطناعي

Example7:

Find the domain of the following function.

\[

\]

Domain \& Range (32/37)

كلية الحاسبات والذكاء الإصطناعي

Example7:

Find the domain of the following function.

$$
f(x)=\sqrt{x^{2}-x-6}
$$

$x^{2}-x-6 \geq 0$
Roots: $x=-2, \quad x=3$
$(x+2)(x-3) \geq 0$

Therefore, the domain is $(-\infty,-2] \cup[3, \infty)$.

Domain \& Range (33/37)

كلية الحاسبات والذكاء الإصطناعي

Example9:

Find the domain of the following function.

$$
f(x)=\frac{2 x+3}{\sqrt{x-2}}
$$

Domain \& Range (33/37)

Example9:

Find the domain of the following function.

$$
f(x)=\frac{2 x+3}{\sqrt{x-2}}
$$

Numerator is defined for all real numbers.
Denominator is defined for $x-2>0$. Then, $x>2$.
So, the domain of the function is the interval $(2, \infty)$.

Domain \& Range (34/37)

كلية الحاسبات والذكاء الإصطناعي

Example10:

Find the domain of the following function.

$$
f(x)=\frac{2 x+3}{\sqrt{x}-2}
$$

Domain \& Range (34/37)

Example10:

Find the domain of the following function.

$$
f(x)=\frac{2 x+3}{\sqrt{x}-2}
$$

Numerator is defined for all real numbers.
Denominator is defined for:

1) $x \geq 0$ and 2) $\sqrt{x}-2 \neq 0$ (i. e., $x \neq 4$)

So, the domain of the function is the interval $[0, \infty)-\{4\}$.

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MGIsbhMiR2Xis-mullsXNwWszlBh

Lecture \#l: https://www.youtube.com/watch?v=pUAaasolcVVClist=PLxlvc-MEDsbhMiR2XismلdsXNwWsZBh(index=1
https://www.youtube.com/watch?v=DWcZqDSddpMElist=PLx|vc-MEDsGhMiR2XismllsXNwWsllBhCindex=2
https://www.youtube.com/watch?v=ITTEDBeMaCAElist=PLxlvc-MEDSShMiR2XismلllsXNwWsZlBhסindex=3
https://www.youtube.com/watch?v=09wg9PgpaECElist=PLx|vcMEDsGgKSI PPAVJpebKDLo-ijECBindex=2 Up to time 01:41:35

Thank You

Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg

